The world needs better and cheaper rechargeable batteries to satisfy the demand for battery electric vehicles with longer range and more powerful cordless devices. A potential solution is high voltage Lithium-Nickel-Manganese Oxide (LNMO) cathode material in next-generation batteries.
LNMO阴极基电池单元会带来与其他高性能锂基电池相提并论,但成本相当较低。
Haldor Topsoe已经在开发世界一流的LNMO阴极材料方面进行了大量投资,我们认为LNMO在下一代锂离子电池中具有很大的阴极材料,这将为未来的电动汽车和无绳装置供电。
那么为什么基于LNMO的电池没有设置新标准的电池性能?其中一个绊脚石是缺乏可以处理基于LNMO电池的应力的电解质。没有人真正意识到LNMO阴极的好处,但由于它在今天的电解质降低的高电压,并且随着时间的推移而使电池呈现。
However, electrolyte manufacturers are getting very promising results from ongoing research & development that will, at some point, result in electrolytes that will function well in a LNMO battery cell. And when that happens, we are ready with a world-class cathode material that makes optimal use of the benefits associated with LNMO.
The unique performance characteristics of LNMO
LNMO is a high-energy and high-power cathode material for use alongside next-generation high-nickel NCA and NMC materials. In addition to the advantages of being cost-effective, cobalt-free and low in nickel, LNMO provides unique performance characteristics due to its three-dimensional spinel structure and electro-chemistry.
高出税率
LNMO尖晶石的三维结构改善了阴极中锂离子的流动。这是用于高电池放电速率的关键推动器,其中离子从阳极流到阴极,并且还可以快速充电,其中离子在相反方向上流动。这意味着在高速率下放电时,LNMO电池中有更多的能量,因为LNMO阴极更有效地接受离子。
LNMO以高放电率保持高容量的独特能力对于只有有限的空间和/或重量限制的应用特别有利 - 如在插件混合电动车(PHEV)中。在大多数电流PHEV中使用的电池在8-12千瓦时产生约8-12千瓦时,在全电动模式下操作时足以驾驶30-50千米。与电池电动车(BEV)相比,PHEV的电池具有5-8倍小的电池 - 但业主仍然期望普及的驾驶体验,这意味着PHEV电池的放电必须以更高的速度进行而不是用贝夫电池。在PHEV和BEV中,对排放率的限制是对车辆性能的限制。
High voltage
电池的电压确定电工实习ochemically by the combination of a high-potential cathode and a low-potential anode. The LNMO cathode provides one of the highest potentials available for current lithium-ion battery cathode materials, resulting in a battery cell with a nominal voltage of 4.7V compared with 3.7V for other cathode types – an increase of roughly 25%.
This unique characteristic makes it possible to simplify the battery package in which battery cells are connected in series to reach a given voltage. Returning to the PHEV example, you would need 25% fewer cells to reach the same voltage. And using fewer battery cells means fewer non-active materials and a battery package with less complexity, resulting in a simpler vehicle battery at lower cost.
在其他应用中,高工作电压可以直接转移到提高生产率。电动电动工具中的电池 - 例如 - 能够从电流乘以电流的结果,也表示为WATT =伏X安培。使用4.7V LNMO电池而不是3.7V电池,此类电动工具可在相同电流工作时产生25%的电源。具有所定义的功率作为工作的速率,您现在已经显着提高了电动工具的生产率。
评论这篇文章